$\operatorname{Max} \quad \lambda U\left(c_{1}\right)+(1-\lambda)\left\{U\left(C_{2}\right)\right.$

$$
\begin{aligned}
& m(N)=N(1-I) \Rightarrow N \rightarrow \infty \\
& \lim _{N \rightarrow \infty} \frac{m(N)}{N} \rightarrow \lambda \\
& \quad M R S=M R T
\end{aligned}
$$

s.t. $\lambda C_{1}=1-I$

$$
(1-\lambda) C_{2}=R I
$$

1. Initial wealth allocation:

$$
\begin{aligned}
& u\left(c_{1}\right)=\frac{1}{1-s} c^{1-s} \\
& \frac{d u(c)}{d s}=\frac{c^{1-s} \cdot(\ln (c) \cdot s-\ln (c)+1)}{(s-1)^{2}} \\
& \frac{d}{d c}\left(\frac{1}{1-s}\right) \cdot c^{1-s}=c^{-s}=\frac{1}{c^{s}}
\end{aligned}
$$

Consumption in the first period for any number is less than second period. (for the second-patient consumer), There will be no liquidation.
2. The consumer - impatient - type f. will have the higher consumption in the first period I since he consumes all. It is because it gits preferences of consumer,

What if $s \rightarrow \infty$
Optimal consumption goes to second period.

3. $\left(C_{1}^{*} C_{2}^{*}\right)$ optimal deposit conshaint C_{1}^{*} to each λ C_{2}^{*} to each $1-\lambda$ (late consumer)

$$
\lambda C_{1}+S \leqslant(1-\lambda) C_{2}+R
$$

4. Based on their beliefs $t=1$ impatient consumers withdraw their money.

Where everyone withdraw money most probably whether there is a systemic risk (fandementolly) or panic among the consumers.

$$
\hat{\lambda}=\lambda+(1-\lambda) x \quad x \in[0,9]
$$

x paction of consumers who withdraw carly.
$L=1$ no liquidation lost, $\cos t s=0$.

$$
\begin{aligned}
I=1 & \hat{\lambda} c_{1}^{*}<1 \\
& \hat{x} c_{2}=1
\end{aligned}
$$

[Allen and Gale]
FOR problem 3.
5. $R<\frac{1}{P} \Rightarrow I=D \quad$ Return on savings is smatter then reture on bonds, So people have incentive to invest insteading of saving $P R=1 \Rightarrow R=\frac{1}{p}$ rate of Returnson band is eq, wo to the price of the bond so market is in equilibrium so there is no incentive to take rick and by bonds, There is no $N E$. when $P R=1$.
6. $\quad t=0, \quad t=1, \quad t=2$,

We are given money at $t=0$. Since there is no FM in allperieds those somal group of abnormally anxious people will cause panic. So everybody will kart to withohow their money at $t=1$. This is the only point where equilibria exists.

$$
\hat{\lambda}=\lambda+(1-\lambda) x
$$

